
On the Aggregated Resource Management for
Satellite Edge Computing

Xiaobin Xu
the Faculty of Information Technology

Beijing University of Technology
Beijing, China

xuxiaobin@bjut.edu.cn

Hui Zhao
the Faculty of Information Technology

Beijing University of Technology
Beijing, China

zh2019@emails.bjut.edu.cn

Chang Liu
School of Information Engineering

Guangdong University of Technology
Guangzhou, China

liuchang research@163.com

Cunqu Fan
Atmospheric Remote Sensing Satellite

Data Center
National Satellite Meteorological Center

Beijing, China
fancq@cma.gov.cn

Zhongjun Liang
Data Service Department

National Meteorological Information Center
Beijing, China

liangzj@cma.gov.cn

Shangguang Wang
the State Key Laboratory of

Networking and Switching Technology
Beijing University of Posts and

Telecommunications
Beijing, China

sgwang@bupt.edu.cn

Abstract—Geosynchronous Earth Orbit (GEO) satellites,
which can relay image data for Low Earth Orbit (LEO) satellites,
play an important role in remote sensing. With the development
of satellite technologies, the significantly improved computation
capabilities of GEO satellites have enabled space service comput-
ing, through which GEO satellites can provide data processing
services before forwarding to reduce the quantity of transmitted
data. In the presence of multiple LEO satellites, how to make
effective use of limited communication and computation resources
in GEO satellites has become crucial. At present, the research
on satellite resource management typically focuses on either
communication or computation resources. Existing resource man-
agement algorithms are usually of slow convergence speed, which
limits their applicability in real-time remote sensing scenarios.
Therefore, we propose an aggregated resource management
method for remote sensing applications. We first propose models
for transmission tasks and processing tasks of remote sensing
images. Then we formulate the aggregated resource management
for satellite edge computing as a hybrid Stackelberg game and
simplify the problem to speed up its convergence speed. Then
we propose a distributed resource management algorithm to
determine the optimal strategies. Simulation results show that
the proposed method can quickly obtain the optimal resource
allocation strategy and outperforms typical dynamic iterative
algorithms in terms of service quantity and throughput.

Index Terms—Remote sensing, mobile edge computing, re-
source management, Stackelberg game

I. INTRODUCTION

With the rapid development of satellite launching tech-
nology, satellite applications have received great attention.
Remote sensing data being relayed by GEO satellites have
become a major way of data transmission for LEO satellites
[1]. The numbers of GEO satellites provide relay services is
very limited by the orbiting space and costs. How to effectively
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use limited communication resources of GEO satellites has be-
come crucial. With the development of electronic component
manufacturing technology, computing hardware in satellites
has been enhanced [2]. GEO satellites are with the capability
of space service computing, which can provide process ser-
vices and reduce the quantity of transmitted data effectively.
In order to make better use of satellite communication and
computation resources, resource management of satellite edge
computing has attracted broad interests from academia and
industry.

Current research usually focuses on communication re-
source management or computing resource management. Hu
et al. proposed a competitive market setting model for re-
source management to achieve a balance between quality of
service (QoS) and energy consumption [3]. Kawamoto et al.
proposed a flexible frequency resource allocation method to
deal with inter-beam interference [4]. Jia et al. proposed
an intelligent resource management scheme composed of
spectrum sensing, prediction and allocation to improve spec-
trum efficiency with different user densities [5]. Jiao et al.
investigated a joint network stability and resource allocation
optimization problem to maximize the long-term network
utility [6]. Liao et al. proposed a cooperative multi-agent
deep reinforcement learning framework for radio resource
management [7]. Chen et al. proposed a layered architecture
and multiple M/M/1 queuing models, then designed a resource
cube algorithm to reduce the total system delay [8]. He et al.
proposed a stochastic optimization framework to maximize the
time average number of hybrid tasks by jointly optimizing
scheduling periods and antenna time block allocation [9]. Li
et al. proposed a dynamically optimal cooperation scheme
between terrestrial agents and satellite systems based on a
stochastic process and optimal contract principle to improve
spectrum efficiency [10]. Li et al. propose a computation
offloading mechanism based on a two-stage Stackelberg game



to analyze the interaction between multiple edge clouds and
multiple IIoT devices [11].

On the basis of the aforementioned existing solutions,
we propose to further consider aggregated management for
communication and computation resources based on a hybrid
Stackelberg game. We enhance the convergence speed of the
algorithm as well, so that it can be better applied to real-time
application scenarios. The main contributions of this paper are
as follows:

• We model the transmission and computation of remote
sensing images, and the process of integrated resource
management as a hybrid Stackelberg game.

• We simplify the Stackelberg game model based on re-
quirements of the application scenario, so that the Nash
equilibrium point of the model can be quickly calculated.

• We propose an efficient method of resource allocation
in remote sensing image application, which can quickly
achieve optimal resource allocation strategy of LEO satel-
lites.

The rest of the paper is organized as follows. In section II,
the remote sensing image service is modeled as a hybrid Stack-
elberg game model. Section III simplifies the model based
on the requirements of the application scenario and proposes
a fast convergent resource allocation algorithm. Section IV
shows the experimental results. Section V concludes the paper.

II. HYBRID STACKELBERG GAME MODEL

A. Application Scene Modeling of Remote Sensing Image

In remote sensing applications, GEO satellites can divide
remote sensing data of each LEO satellite into two parts, one
of which is forwarded directly to the ground, and the other
is forwarded to the ground after processing. The process is
shown in Fig. 1.

Fig. 1. Schematic diagram of remote sensing image application

Suppose that there are M LEO satellites, denoted as:
LEO = {1, 2, · · · ,M}. And N GEO satellites, denoted as:
GEO = {1, 2, · · · , N}. For the mth LEO satellite, the total
amount of data uploaded is Qm = (FQm, PQm), where
FQm > 0 represents the amount of data forwarded directly,
and PQm > 0 represents the amount of data processed. The
quantity of processed data is ωPQm, where the compression
ratio of data processing is recorded as ω, 0 < ω < 1.

In the process of remote image sensing, LEO satellites only
need to send all the raw data to GEO satellites, so the cost
mainly comes from the energy consumed by transmission. We
model the energy consumption as follows: the total amount

of data sent by LEO satellite m is FQm + PQm. The trans-
mission time T tmn from LEO satellite m to GEO satellite n is

T tmn =
FQm + PQm

rmn
, where rmn denotes the transmission

rate from satellite m to satellite n. The energy consumption of
transmission from satellite m to satellite n is Etmn = ρmnT

t
mn,

where ρmn denotes the transmission power from satellite m
to satellite n.

The costs of GEO satellites consist of calculation costs and
transmission costs. For the task of satellite m, the processing

time in satellite n is T cmn =
PQm
cn

, where cn denotes the

calculation ability of satellite n. The energy consumption of
processing is Ecmn = ηnT

c
mn, where ηn represents the energy

consumption coefficient per CPU cycle of satellite n.
The total amount of data to be transmitted by satellite n

is GQmn = FQm + ωPQm, then the time for transmitting
data from satellite n to the ground station is expressed

as GT tmn =
GQmn
rn

, where rn denotes the rate of data

transmission from satellite n to the ground station. And then
the transmission energy consumption is GEtmn = ρnGT

t
mn,

where ρn represents the data transmission power of satellite
n to the ground station.

B. Hybrid Stackelberg Game Model

The management of transmission and computation resources
can be modeled as a hybrid Stackelberg game model. GEO
satellites, as service providers and leaders in the game, will
first give pricing strategies of communication and compu-
tation resources. LEO satellites are not only consumers of
the service, but also followers of the game, so they will
determine the data processing and transmission schemes ac-
cording to pricing strategies. We denote the set of remote
sensing image transmission requirements of LEO satellites
as Q = {Q1, Q2, · · · , QM}, and the computation resource
pricing set of GEO satellites as P = {P1, P2, · · · , PN}, where
Pi = (CPi, TPi), CPi > 0, TPi > 0. The utility functions of
service providers and consumers are as follows:

For the LEO satellite m, the utility function
Fm(TPn, CPn, FQm, PQm) is expressed as:

Fm(TPn, CPn, FQm, PQm) = Um −Dm − γEtmn. (1)

Where Um denotes the satisfaction of satellite m, Um =
aln(1+FQm)+ bln(1+PQm). a, b denotes the coefficients
of satisfactions with communication and computation. Dm

denotes pay for expenses of satellite m, Dm = TPn ×
FQm + CPn × PQm. Etmn denotes the transmission energy
consumption of satellite m, and γ denotes the coefficient factor
of energy consumption. Then Fm is calculated as below.

Fm(TPn, CPn, FQm, PQm)

= aln(1 + FQm + bln(1 + PQm))− TPn × FQm

− CPn × PQm −
γρmn(FQm + PQm)

rmn
.

(2)



For the GEO satellite n, its utility function is shown in
equation (3).

Gn(TPn, CPn, FQm, PQm)

=
∑

Smn=1

(Dm − δEcmn − δGEtmn).
(3)

Where δ is the coefficient factor of energy consumption.
Smn = 1 means that satellite m choose the services in satellite
n to forward and process the image data. Then Gn is obtained
as below.

Gn(TPn, CPn, FQm, PQm)

=
∑

Smn=1

(TPn × FQm + CPn × PQm

− δηnPQm
cn

− δρn(FQm + ωPQm)

rn
).

(4)

C. Nash Equilibrium Analysis

This section proves that there is a Nash equilibrium point
in the hybrid Stackelberg game model proposed in this paper.

Theorem 1. Considering dynamic transmission requirements
with a fixed number of LEO satellites, for a certain LEO
satellite whose utility function satisfies equation (2), there
exists a unique Nash equilibrium point.

Proof. The first-order partial derivative of the utility function
of the mth satellite (eqn.(2)) are calculated as follow.

∂ (Fm (TPn, CPn, FQm, PQm))

∂FQm

=
a

1 + FQm
− TPn −

γρmn
rmn

,
(5)

and
∂ (Fm (TPn, CPn, FQm, PQm))

∂PQm

=
b

1 + PQm
− CPn −

γρmn
rmn

.

(6)

Then the second-order partial derivative of equation (2) are
calculated as follows.

A =
∂(F 2

m(TPn,CPn,FQm,PQm))
∂FQ2

m
= − a

(1+FQm)2
, (7)

B =
∂(F 2

m(TPn,CPn,FQm,PQm))
∂FQm∂PQm

= 0, (8)

and

C =
∂(F 2

m(TPn,CPn,FQm,PQm))
∂PQ2

m
= − b

(1+PQm)2
. (9)

Since AC − B2 > 0 and A < 0, the maximum value of
utility function and the Nash equilibrium both exist.

When the utility function takes its maximum, the values of
equations (5) and (6) are equal to zero, and the optimal data
quantities for transmission and computation can be obtained
as:

FQ∗
m = armn

rmnTPn+γρmn
− 1, (10)

and
PQ∗

m = brmn

rmnCPn+γρmn
− 1. (11)

Theorem 2. We consider a fixed number of GEO satellites
with dynamic prices of resources. For each GEO satellite
whose utility function satisfies equation (4), there is a unique
Nash equilibrium point for the utility function.

Proof. The utility function of the GEO satellite n is con-
structed in equation (4). The first-order partial derivative of
TPn and CPn are calculated as follows.

∂(Gn(TPn,CPn,FQ
∗
m,PQ

∗
m))

∂TPn

=
∑
Smn=1

(
armn(γrnρmn+δρnrmn)

rn(rmnTPn+γρmn)
2 − 1

)
,

(12)

and
∂(Gn(TPn,CPn,FQ

∗
m,PQ

∗
m))

∂CPn

=
∑
Smn=1

(
brmn(γcnrnρmn+δηnrnrmn+δωρncnrmn)

cnrn(rmnCPn+γρmn)
2 − 1

)
.

(13)
The second-order partial derivative of equation (4) are

calculated as follows.

A =
∑

Smn=1

∂
(
G2
m (TPn, CPn, FQ

∗
m, PQ

∗
m)
)

∂TP 2
n

=
∑

Smn=1

−2ar2mn (γrnρmn + δρnrmn)

rn (rmnTPn + γρmn)
3 ,

(14)

B =
∑

Smn=1

∂
(
G2
m (TPn, CPn, FQ

∗
m, PQ

∗
m)
)

∂TPn∂CPn
= 0, (15)

and

C =
∑

Smn=1

∂
(
G2
m (TPn, CPn, FQ

∗
m, PQ

∗
m)
)

∂CP 2
n

=
∑

Smn=1

−2br2mn (γcnrnρmn + δηnrnrmn + δωρncnrmn)

cnrn (rmnCPn + γρmn)
3 .

(16)
Since AC − B2 > 0 and A < 0, the maximum value of

utility function and the Nash equilibrium both exist.

III. AGGREGATED RESOURCE MANAGEMENT METHOD
BASED ON HYBRID STACKELBERG GAME

A. Model Simplification

In equations (12) and (13), rmn and ρmn change with
m. However, in practical network applications, network in-
frastructure often provides the same transmission rate for
terminal devices, and similar terminals often have the same
standardized transmission power. Assuming that in the future
6G scenario, GEO satellites, as space-based 6G base stations,
provide general network access services to LEO satellites.
LEO satellites send data to GEO satellites at the same rate
(denoted as rmn) with the same transmission power (denoted
as ρmn), i.e., rmn = r, ρmn = ρ, where r and ρ are both



constant. Equation (12) and equation (13) are then rewritten
as follows:

∂ (Gn (TPn, CPn, FQ
∗
m, PQ

∗
m))

∂TPn

= m

(
ar (γrnρ+ δρnr)

rn (rTPn + γρ)
2 − 1

)
,

(17)

and

∂ (Gn (TPn, CPn, FQ
∗
m, PQ

∗
m))

∂CPn

= m

(
br (γcnrnρ+ δηnrnr + δωρncnr)

cnrn (rCPn + γρ)
2 − 1

)
.

(18)

The zeros of equations (12) and (13) are solved as follows.

TP ∗
n =

√
a (γrnρ+ δρnr)

rrn
− γρ

r
, (19)

and

CP ∗
n =

√
b (γcnrnρ+ δηnrnr + δωρncnr)

rcnrn
− γρ

r
. (20)

B. Distributed Resource Management Algorithm

Based on the analysis of Nash equilibrium in the hybrid
Stackelberg game, we proposed a distributed resource man-
agement algorithm.

GEO satellites first provides their initial pricing strategies
and broadcasts them to LEO satellites. The resource require-
ments of LEO satellites is initialize to be 0, i.e., FQ∗

m =

PQ∗
m = 0. Then, TPn = a − γρ

r
, CPn = b − γρ

r
. After

receiving the pricing strategy, LEO satellites choose suitable
GEO satellites and send their optimal resource requirements to
selected GEO satellites. GEO satellites calculate the optimal
pricing strategies according to the requirements of LEO satel-
lites, this process is repeated until the algorithm converges.
This process is described in details in Algorithm 1.

Through algorithm 1, both GEO satellites and LEO satellites
can quickly calculate the optimal prices and resource require-
ments. In the worst case, the amount of computation on a
certain GEO satellite is the same with the number of messages
from LEO satellites, and the computational complexity of each
round is O(M). Similarly, the calculation complexity of each
round of each LEO satellite is O(N) in the worst case. In
real applications, due to the limited number of satellites, this
algorithm usually converges as a much faster speed.

IV. NUMERICAL RESULTS

In order to verify the performances of the resource manage-
ment method proposed in this paper, a typical remote sensing
satellite application scenario is designed and simulated based
on MATLAB 2019b.

Algorithm 1 Distributed Resource Management Algorithm
GEO satellites:
Input: Threshold of task quantity QT .
Output: Optimal pricing TP ∗

n , CP
∗
n .

1: Generate initial prices: TPn = a − γρ

r
, CPn = b − γρ

r
.

Initialization:
2: for any m,FQm = PQm = 0.
3: Broadcast TPn, CPn to LEO satellites.
4: Receive task requirements FQ∗

m, PQ
∗
m.

5: while new FQ∗
m, PQ

∗
m received

6: if|FQ∗
m − FQm| > QT OR |PQ∗

m − PQm| > QT
7: Computing TP ∗

n and CP ∗
n according to equation (19)

and (20).
8: Broadcasting TP ∗

n and CP ∗
n to all LEO satellites.

9: FQm = FQ∗
m;PQm = PQ∗

m.
10: end if
11: end while
LEO satellites:
Input: Threshold of price PT .
Output: Optimal task quantity FQ∗

m, PQ
∗
m.

Initialization:
1: FQm = PQm = 0.
2: for any n, TPn = a− γρ

r
, CPn = b− γρ

r
.

3: while new TP ∗
n , CP

∗
n received

4: if |TP ∗
n − TPn| > PT OR |CP ∗

n − CPn| > PT
5: Computing FQ∗

m and PQ∗
m according to equation (10)

and (11).
6: Broadcasting FQ∗

m and PQ∗
m to all GEO satellites.

7: end if
8: end while

A. Parameters Setup

The typical experimental scenarios designed in this paper
consist of 18 LEO satellites for remote sensing images and
3 GEO satellites for data forwarding and processing. Each
GEO satellite provides relay service for 6 LEO satellites.
Although data processing can reduce the data quantity of
transmissions, some original information can get lost, so we
set the satisfaction coefficient of transmission a higher than the
satisfaction coefficient of computation b (a = 10, b = 6). For
GEO and LEO satellites, each side formulates its own strategy,
which is called one-round game. The time duration of 1 round
is denoted as T . Parameter settings of the simulation are listed
in Table I.

B. Analysis of The Result of Resource Allocation

In this subsection, we investigate the utilities of players, as
shown in Fig. 2, the total utilities and average utilities of LEO
satellites and GEO satellites reach their optimal values in the
second round. This verifies the fast convergence speed of the
proposed algorithm.

The fast convergence speed is a result of the simplification
of hybrid Stackelberg game model, which makes the optimal
prices of GEO satellites computable. Most existing approaches



TABLE I
PARAMETER SETTINGS

Notation Description Value
a Satisfaction coefficient of transmission 10
b Satisfaction coefficient of computation 6
γ Energy consumption coefficient of LEO satellites 0.1
δ Energy consumption coefficient of GEO satellites 0.1
r Transmission rate of LEO satellites 10 MBps
rn Transmission rate of GEO satellite n 100 MBps
ρ Transmission power of LEO satellites 10 W
ρn Transmission power of GEO satellite n 100 W
Cn Computing capability of GEO satellite n 5 GB/s
ηn Computation power GEO satellite n 50 W
ω Compression ratio of processing 0.01
T Time duration of 1 round 10 s
QT Threshold of task quantity 0.01
PT Threshold of price 0.01
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use dynamic iterative algorithms (DIAs) to find optimal prices
[11]. To evaluate the proposed approach comprehensively, we
compare the proposed approach with a typical DIA-based
approach [11]. In DIA, step sizes are set to be 0.1, 0.08, 0.06,
respectively. Other parameters are set to be the same with the
proposed algorithm. We define social welfare as the sum of
utilities of all players. The comparison on social welfare is
shown in Fig. 3.

As shown in Fig. 3, the convergence speed of DIA is
determined by the step size. Larger step size leads to shorter
convergence time. Through DIA, the social welfare reaches
its maximum value in the 20th round when its step size is
set to be 0.1. Nonetheless, the convergence time is still much
longer than the proposed approach. In practical scenarios, fast
convergence speed leads to performance improvement, which
is discussed in the next subsection.

C. Performance Discussions and Comparisons

To investigate the performance of the proposed approach,
we evaluate the performance of the proposed approach in terms
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of quantity of service and throughput, respectively.
The quantity of service includes quantity of transmission

and computation, which are denoted as TFQ and TPQ,
respectively. TFQ and TPQ can be calculated in eqns (21)
and (22), respectively.

TFQ =
∑

FQm, (21)

and
TPQ =

∑
PQm. (22)

We investigate the quantity of remote sensing data transmit-
ted to the ground per time slot (refer to as throughput), and the
total quantity of remote sensing data transmitted to the ground
in time t (refer to as average throughput). The throughput
(denoted as TPS) and average throughput (denoted as ATPS)
can be computed as shown in eqns.(23) and (24).

TPS =

∑
(FQm + PQm)

T
, (23)

and

ATPS =

∑t
t0

∑
(FQm + PQm)

t− t0
. (24)

where t0 denotes the beginning time of application, t denotes
the time.

In these simulations, the step size of DIA is set to be
0.1. Simulation results on quantity of service and throughput
are shown in Fig. 4 and Fig. 5, respectively. As shown in
Fig. 4, TFQ and TPQ of the proposed approach reach their
maximum in the second round. However, through DIA, TFQ
and TPQ reach their maximum at the 11th and the 20th
round, respectively. Before DIA reach its optimal solution,
the proposed approach forward and process more data to the
ground, which increases the quantity of space-based service.

As shown in Fig. 5, the throughput and average throughput
of the proposed approach are always larger than that of DIA.
The throughput of DIA reaches its maximum at the 20th round,
which is the same as the result in Fig. 4. Over time, the
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average throughput of DIA increases much slower than the
average throughput of the proposed approach. This is because
that the fast convergence speed improves the throughput of the
application.

These simulations show that the proposed approach has a
higher convergence speed compared with existing dynamic
iterative algorithms. Higher convergence speed leads to higher
performances in terms of quantity of service and throughput.

V. CONCLUSION

In this paper, a hybrid Stackelberg game is modeled based
on the remote sensing image transmission scenario. With
the simplification of the hybrid Stackelberg game model, we
proposed a novel approach with high convergence speed. The
performance of the proposed approach is verified by simula-
tions and shows higher forwarded and processed quantity of
service and throughput.
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